Modern English School Cairo

American Section Mathematics Department

Summer work for Pre-calculus students

Please complete the following questions showing full work. Submit to your Precalculus teacher on the first day of term.

I. Quadratics Equations

Solve each of the following equation	s using factoring.
a. $x^2 - 36 = 0$	b. $7x^2 - 14x = 0$
$x^3 - 6x^2 - 7x = 0$	d. $6x^2 + 7x - 3 = 0$
$e. 3x^2 + 3x - 36 = 0$	f. $32x^2 - 2 = 0$
$g. x^3 - 2x^2 - 9x + 18 = 0$	h. $x^3 - 3x^2 + 6x - 18 = 0$

Factor each polynomial COMPLETELY.

Sum of Two Cubes: $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

Difference of Two Cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

a.
$$x^3 + 27$$

b.
$$8x^3 - 125$$

c.
$$x^4 + 5x^2 - 14$$

d.
$$2x^5 - 18x^3 + 40x$$

Solve each of the following equations using the Quadratic Formula.

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

a.
$$4x^2 + 6x + 1 = 0$$

b.
$$x^2 + 2x + 2 = 0$$

c.
$$2x^2 + 3x - 5 = 0$$

d.
$$3x^2 - 2x - 7 = 0$$

II. Powers, Roots, and Radicals

Rewrite the expression with positive exponents. Evaluate where possible.

a. $(-3)^{-4}$

b. 4

c. $3x^3(2x)^2$

 $\frac{8a^4b^6}{2(a^5b)^2}$

e. $4(x^{-3}y^4)(-3xy^2)^2$

f. $\frac{20(a^{-4}b^{-2})}{8(a^{-2}b^4)^{-2}}$

Solve the radical or rational exponent equation.

a. $x^{\frac{1}{5}} = 2$

b. $2\sqrt{3x-1}+3=11$

c. $4x^2 = 64$

d. $2(x-2)^{\frac{1}{4}} - 3 = 159$

e. $\sqrt{2x+4} = \sqrt{x+2}$

f. $\sqrt[3]{x} - 6 = -2$

III. Simplifying Rational Expressions

Simplify the Rational Expression using Multiplication or Division.

a.
$$\frac{x^2 + 4x - 12}{x^2(x^2 + 9x + 18)} \cdot 6x^2$$

$$f. \quad \frac{12x^2y^3z}{6x^3y^2z^2}$$

b.
$$\frac{3x^2 - 12}{5x - 10} \cdot \frac{1}{2x + 4}$$

g.
$$\frac{x^3 + 3x^2}{2x} \div \frac{x^2 + 5x + 6}{5x^3}$$

c.
$$\frac{x^2 - 4}{x^2 + 4} \cdot \frac{x + 2}{x - 2}$$

h.
$$\frac{x^2 + x - 20}{x + 1} \div \frac{11x + 55}{x + 1}$$

$$d. \quad \frac{5x^2 - 20}{25x^2} \cdot \frac{x}{x - 2}$$

i.
$$\frac{x^2 + 5x + 6}{x + 3} \div \frac{x^2 - 4}{x + 1}$$

e.
$$x^2 + x - 30 \cdot \frac{x}{x^2 + 6x}$$

j.
$$\frac{x^2 + 6x - 7}{3x^2} \div \frac{x + 7}{6x}$$

Simplify the Rational Expression using Addition or Subtraction. (LCD = ?)

a.
$$\frac{4}{3x^2} + \frac{2}{5x}$$

b.
$$\frac{3}{2x-2} + \frac{x+1}{4}$$

$$\frac{4}{3x^3} + \frac{x}{6x^3 + 3x^2}$$

d.
$$\frac{5x-1}{x^2+2x-8} - \frac{6}{x+4}$$

e.
$$\frac{x+1}{x^2+6x+9} - \frac{1}{x^2-9}$$

IV. Solving Rational Equations

Solve each rational equation.

a.
$$\frac{3}{x+4} = \frac{9}{x-2}$$

b.
$$\frac{4x}{x-1} = \frac{x}{x^2 - 1}$$

c.
$$\frac{3}{x^2-4} = \frac{2}{x+2} + \frac{x}{x-2}$$

d.
$$\frac{3x-2}{x-2} = \frac{6}{x^2-4} + 1$$

e.
$$\frac{x}{x+2} = \frac{3x+1}{x-1} + \frac{4}{x^2+x-2}$$

V. Function Operations

Perform the indicated operation with the functions given.

Let $f(x) = x^2 - 3x + 4$, g(x) = 5x + 2, and h(x) = 6x.

a.
$$(f+g)(x)=$$

b.
$$(f-h)(x) =$$

c.
$$(g \cdot h)(x) =$$

d.
$$(f+h)(-2)=$$

e.
$$(h-g)(3)=$$

f.
$$(g \cdot f)(0) =$$

$$g. \quad (f \circ g)(x) =$$

$$h. \quad (f \circ h)(x) =$$

i.
$$(g \circ f)(1) =$$

j.
$$(f \circ h)(-7) =$$

$$\mathsf{k.} \quad g(h(f(x))) =$$

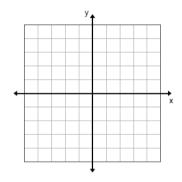
I.
$$f(g(h(-1))) =$$

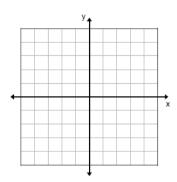
VI. Inverses

Find the inverse of each function.

a.
$$f(x) = 2x + 5$$

b.
$$f(x) = \sqrt[3]{2x+4}$$


c.
$$f(x) = 5 - \frac{5}{2}x$$


$$d. \quad f(x) = \frac{x-2}{4}$$

Verify that the two functions are inverses of each other using composite functions. Then, verify (a) and (b) by graphing.

a.
$$f(x) = x + 7$$
, $g(x) = x - 7$

b.
$$f(x) = \frac{1}{2}x + 1$$
, $g(x) = 2x - 2$

c.
$$f(x) = \frac{1}{3}x^2$$
, $g(x) = \sqrt{3x}$

d.
$$f(x) = \frac{x^5 + 2}{7}$$
, $g(x) = \sqrt[5]{7x - 2}$

The graph of the inverse function is the reflection of the original function over what line?

VII. Exponential & Logarithmic Functions

Solve each equation.

 $y = \log_b x$ if and only if $x = b^y$.

Think of $y = \log_b x$ as the answer to: "To what power must b be raised to obtain x?"

$$a. \quad \left(\frac{1}{3}\right)^x = 27$$

b.
$$5^{3x} = 25^{x-1}$$

c.
$$4^x = 0.25$$

d.
$$10^x = 15$$

e.
$$e^{3x} = 24$$

f.
$$\ln 3x = -0.5003$$

g.
$$\log_x 64 = \frac{1}{2}$$

h.
$$\log_3 x = 5$$

i.
$$\log_4 256 = x$$

j.
$$\log_7(2x+5) = \log_7(x-3)$$

k.
$$\log_2(2x^2) = 5$$

$$1. \quad \log x = 2.096910013$$

m.
$$256e^{2x} = 1400$$

n.
$$75 = 21(1.05)^t$$

0.
$$10^{x^2+3x-7} = 1,000$$

Wı	ite the logs in condensed form.	Write the logs in expanded form.
a.	$2\log x - x\log y$	b. $\log x^2 y^3 z^4$
c.	$\log x + 2\log y$	d. $\log(x^2+1)z$
e.	$\log x + \frac{1}{2}\log y - 2\log z$	f. $\log \frac{x^2}{z^6}$
g.	$\log x + \log y + \log z - 2\log w$	h. $\log x^2 y$

	where: • $P = \text{original amount deposited or the initial investment}$ • $r = \text{the interest rate expressed as a decimal } (5\% \rightarrow 0.05)$ • $n = \text{the number of times a year the interest is paid}$ • $t = \text{the number of years the investment spans}$				
а.	Find the value of a at 6% interest after compounded: (a) annually (b) quarterly		b.	If you invest \$30,000 at 4.76% interest paid quarterly, how long would it take you to double your money? Round your answer to the nearest hundredth.	
	(c) monthly(d) continuously				
c.	Suppose \$2,000 is year certificate of dearns 6% interest, continuously. How investment be wort	eposit (CD) that compounded much will the	d.	You invest \$200 at 12.25% earning continuous interest. How many years does it take for your money to increase 5 times its original value? Round your answer to the nearest tenth.	

Simplify:
$$1. -\sqrt[5]{-32}$$

5.
$$(2+\sqrt{5})(1-\sqrt{5})$$

2.
$$\sqrt[4]{16x^8y^4}$$

6.
$$\sqrt[3]{x} (\sqrt[3]{3x^2} + \sqrt[3]{12x})$$

3.
$$\sqrt[3]{108} - 2\sqrt{75} + \sqrt{147}$$

7.
$$\frac{\sqrt{60a^8}}{\sqrt{72a^5}}$$

4.
$$\sqrt[3]{12x^3}\sqrt[3]{2x^4}$$

8.
$$\frac{1}{2-\sqrt{3}}$$

Write the rational exponents in radical form:

9.
$$4^{\frac{2}{3}}$$

10.
$$y^{\frac{1}{4}}$$

Solve:

$$11.\sqrt{5x+4} = 12$$

12.
$$\sqrt{4x+1} - \sqrt{x-2} = 3$$

Simplify: 13.
$$\sqrt{-3} \cdot 5i$$

14.
$$(8-5i)-(-1+3i)$$

Multiply: 15.
$$(8-5i)(8+5i)$$

16.
$$(2 - i\sqrt{3})(2 + i\sqrt{3})$$

$$\frac{\text{Divide:}}{17.\frac{2}{4i}}$$

18.
$$\frac{(7+2i)}{4+5i}$$

Solve by factoring:

21.
$$b^2 = 4b + 21$$

22.
$$x^2 = 8x$$

Solve by the square root method:

$$23. q^2 - 169 = 0$$

24.
$$(2x-4)^2 = -64$$

Solve by completing the square:

25.
$$x^2 + 12x + 18 = 0$$

26.
$$2x^2 - 7x = 15$$

Solve using the quadratic equation:

27.
$$x^2 - 3x + 5 = 0$$

28.
$$4x^2 - 2x + 5 = 0$$

Find the discriminant and determine the number of solutions:

29.
$$x^2 + 3x + 5 = 0$$

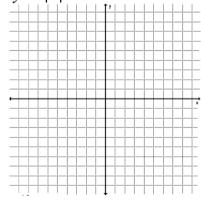
30.
$$10 - 2x^2 - 6x = 0$$

Test the following equations for symmetry with respect to the x and y axis:

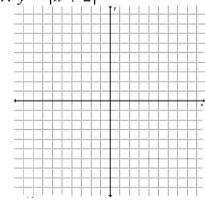
31.
$$4y = 3x^2 - 1$$

$$32.2x^2 - 3y^2 = 5$$

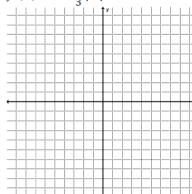
31.
$$4y = 3x^2 - 1$$
 32. $2x^2 - 3y^2 = 5$ **33.** $x^3 + 3y^3 = 10$

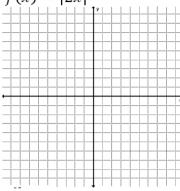

Determine whether each function is even, odd, or neither:

34.
$$f(x) = 5x$$

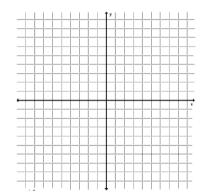

35.
$$f(x) = x^2 + 3$$

Given the graph y = |x| graph the following:

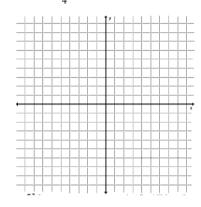

36.
$$y = |x| - 7$$


37.
$$y = |x + 2|$$

$$38. f(x) = -\frac{1}{3}|x|$$



39.
$$f(x) = |2x|$$



Graph the quadratic function and determine the vertex, line of symmetry, and minimum/maximum value:

40.
$$f(x) = -2(x+6)^2 + 3$$

41.
$$f(x) = \frac{1}{4}(x-4)^2 + 2$$

Rewrite the quadratic function in standard form by completing the square:

42.
$$f(x) = x^2 - 3x + 5$$

$$43. f(x) = -4x^2 + 2x + 3$$